Volume 2, Issue 2, March 2014, Page: 6-9
Deriving E = mc2 /22 of Einstein’s Ordinary Quantum Relativity Energy Density from the Lie Symmetry Group SO (10) of Grand Unification of All Fundamental Forces and Without Quantum Mechanics
Mohamed S. El Naschie, Dept. of Physics, University of Alexandria, Egypt
Received: Mar. 16, 2014;       Accepted: Apr. 25, 2014;       Published: Apr. 30, 2014
DOI: 10.11648/j.ajma.20140202.11      View  4320      Downloads  165
In the present short letter we aim at deriving the cosmic ordinary effective quantum gravity energy density as well as that of dark energy from the SO (10) Lie symmetry group of grand unification. Remarkably the derivation makes no use of quantum mechanics and remains largely classical except for nonclassical geometry and topology. Finally our main conclusions and results are reinforced using a nonlocal classical elastic field theory.
Einstein’s Quantum Gravity Energy, Dark Energy, Lie Symmetry Groups, Unification of Fundamental Forces
To cite this article
Mohamed S. El Naschie, Deriving E = mc2 /22 of Einstein’s Ordinary Quantum Relativity Energy Density from the Lie Symmetry Group SO (10) of Grand Unification of All Fundamental Forces and Without Quantum Mechanics, American Journal of Mechanics and Applications. Vol. 2, No. 2, 2014, pp. 6-9. doi: 10.11648/j.ajma.20140202.11
R. Penrose, The Road to Reality. Jonathan Cape, London, 2004.
M.S. El Naschie, A unified Newtonian-relativistic quantum resolution of the supposedly missing dark energy of the cosmos and the constancy of the speed of light. Int. J. Modern Nonlinear Sci. & Application., 2(1), 2013, pp. 43-54.
M.S. El Naschie, Pinched material Einstein spacetime produces accelerated cosmic expansion. Int. J. Astron. & Astrophys. 4(1), 2014, pp. 80-90.
Graham, L. and Kantor, J.M.: Naming Infinity. The Belknap Press of Harvard University Press. Cambridge, Massachusetts, USA, 2009. (In particular see pages 87-89).
Heller, M. and Woodin, W.H. (Editors): Infinity. Cambridge University Press, Cambridge, 2011.
El Naschie, M.S.: The theory of Cantorian spacetime and high energy particle physics (an informal review). Chaos, Solitons & Fractals, 41(5), 2009, pp. 2635 – 2646.
Penrose,R.: The Road to Reality. Jonathan Cape, London, 2004.
Jammer, M.: Concepts of Space. Dover Publications, New York, (1993).
El Naschie, M.S.: Superstrings, knots and noncommutative geometry in E ∞ space. Int. J. of Theoretical Phys., 37(12), 1998, pp. 2935-2951.
El Naschie, M.S.: Einstein’s dream and fractal geometry. Chaos, Solitons & Fractals, 24(1), 2005, pp. 1-5.
El Naschie, M.S.: On twisters in Cantorian E-infinity space. Chaos, Solitons & Fractals, 12(4), 2001, pp. 741-746.
El Naschie, M.S.: The VAK of vacuum fluctuation, spontaneous self-organization and complexity theory interpretation of high energy particle physics and the mass spectrum. Chaos, Solitons & Fractals, 18(2), 2003, pp. 401-420.
Challamel, N., Wang, C.M. and Eli-shakoff, I.: Discrete systems behave as nonlocal structural elements; bending buckling and vibra-tion analysis. Euro. J. Mech. A/Solids, 44, 2014, pp. 125-135.
El Naschie, M.S.: Stress, Stability and Chaos in Structural Engineering: An Energy Approach. McGraw Hill Int. Editions Civil Eng. Series., London, Tokyo, 1990.
Eringen, A.C. and Edelen, D.G.: On nonlocal elasticity. Int. J. Eng. Sci., 10(3), 1972, pp. 233-248.
El Naschie, M.S.: El Naschie, M.S.: Logarithmic running of ‘t Hooft-Polyakov monopole to dark energy. Int. J. High Energy Phys. 1(1), 2014, pp. 1-5.
El Naschie, M.S.: Capillary surface energy elucidation of the cosmic dark ener-gy-ordinary energy duality. Open J. Fluid Dynamics. 4(1), 2014, pp. 15-17.
El Naschie, M.S.: On the need for fractal logic in high energy quantum physics. Int. J. Mod. Nonlinear Theory & Application. 1(3), 2012, pp. 84-92.
El Naschie, M.S.: A resolution of cosmic dark energy via a quantum entanglement relativity theory. J. Quantum Info. Sci., 3(1), 2013, pp. 23-26.
El Naschie, M.S.: Quantum entanglement: Where dark energy and negative gravity plus accelerated expansion of the universe comes from. J. of Quant. Info. Sci., 3, 2013, pp. 57-77. (See in particular Fig. No. 4, p. 62).
El Naschie, M.S. and Helal, A.: Dark energy explained via the Hawking-Hartle quantum wave and the topology of cosmic crystallography. Int. J. Astronomy & Astrophys., 3(3), 2013, pp. 318-343.
El Naschie, M.S.: Nash embedding of Witten’s M-theory and the Hawking-Hartle quantum wave of dark energy. J. Mod. Phys., 4, 2013, pp. 1417-1428.
J. Magueijo and L. Smolin. Lorentz invariance with invariant energy scale. Phys. Rev. Lett., 8, 190403, 2002.
El Naschie, M.S.: Why E is not equal to mc2. J. of Mod-ern Phys. In press. 2014.
El Naschie, M.S.: Calculating the exact experimental density of the dark energy in the cosmos assuming a fractal speed of light. Int. J. Modern Nonlinear Theory & Appli. 3, 2014, pp. 1-5.
El Naschie, M.S.: Topological-geometrical and physiccal inter-pretation of the dark energy of the cosmos as a ‘halo’ energy of the Schrödinger quantum wave. J. Mod. Phys., 4(5) 2013, pp. 591-596. (See in particular part 5, p. 596).
Marek-Crnjac, L. and El Naschie, M.S.: Quantum gravity and dark energy using fractal Planck scaling. J. Mod. Phys., 4(11A), 2013, pp. 31-38.
El Naschie, M.S.: Nanotechnology for the developing world. Chaos, Solitons & Fractals, 30(4), 2006, pp. 769-773.
Ando, T. et al: Mesoscopic Physics and Electronics. Springer, Heidelberg 1998.
Browse journals by subject