Volume 7, Issue 4, December 2019, Page: 88-100
Volumetric and Ultrasonic Study of Mixtures of Benzyl Alcohol with 1-Propanol, 2-Propanol, and 1,2-Propandiol, 1,3-Propandiol and T-butanol
Fatemeh Fadaei Nobandegani, Department of Food Science and Thecnology, Fasa University, Fasa, Iran
Abouzar Roeintan, Department of Chemistry, Emam Hossein University, Tehran, Iran
Received: Jun. 22, 2019;       Accepted: Jul. 15, 2019;       Published: Jan. 8, 2020
DOI: 10.11648/j.ajma.20190704.12      View  326      Downloads  108
Densities and speeds of sound for five binary mixtures of benzylalcohol with 1,3-propandiol, 1- propanol, 2- propanol, 1,2-propandiol and phenylethnol were measured over the entire range of composition and at five temperatures from 298.15K to 323.15K at 5K interval and atmospheric pressure using a vibrating u-tube densimeter (DSA 5000). Besides, the densities for pure compounds in the above-mentioned temperature range were measured. The experimental densities were used to calculate the excess molar volumes, isentropic compressibility changes, the excess thermal expansion coefficients, and the excess partial molar volumes at infinite dilution, The results have been used to discuss the nature and strength of intermolecular interactions in these mixtures. The calculated excess and deviations quantities are correlated with the third-order Redlich–Kister equation. As a final work we modeled the experiment results by using TM and PR EOSs. This is clear that the results with TM EOS are more acceptable than PR EOS. TM and PR EOS can successfully predict density and excess molar volume. And are unable to predict speed of sound.
Alcohols, Binary Mixtures, Excess Properties, Density, Modeling, Speed of Sound
To cite this article
Fatemeh Fadaei Nobandegani, Abouzar Roeintan, Volumetric and Ultrasonic Study of Mixtures of Benzyl Alcohol with 1-Propanol, 2-Propanol, and 1,2-Propandiol, 1,3-Propandiol and T-butanol, American Journal of Mechanics and Applications. Vol. 7, No. 4, 2019, pp. 88-100. doi: 10.11648/j.ajma.20190704.12
Copyright © 2019 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
H. Ogawa, S. Murakami, Journal of Solution Chemistry 16 (1987) 315–326. 353.
E. Jiménez, M. Cabanas, L. Segade, S. García-Garabal, H. Casas, Fluid Phase Equilibria 354 180 (2001) 151–164. 355.
H. A. Zarei, S. Asadi, H. Ilukhani, Journal of Molecular Liquids 141 (2008) 25–30. 356.
E. Zorebski, B. Luboweiecka-Kostka, Journal of Chemical Thermodynamics 41 357 (2009) 197–204. 358.
E. Zorebski, M. Geppert-Rybczynska, B. Maciej, Journal of Chemical and Engineering 359 Data 55 (2010) 1025–1029. 360.
M. G. Bravo-Sanchez, G. A. Iglesias-Silva, A. Estrada-Baltazar, Journal of Chemical 361 and Engineering Data 55 (2010) 2310–2315. 362.
M. M. Papari, H. Ghodrati, F. Fadaei, R. Sadeghi, S. Behrouz, M. N. Soltani Rad, J. Moghadasi, J. Mol. Liq. 121 (2013),180.
A. Abida, S. Hyder, A. K. Nain, Collection of Czechoslovak Chemical Communications 363 67 (2002) 1125–1140. 364.
C. J. Wormald, C. J. Sowden, The Journal of Chemical Thermodynamics 29 (1997) 365 1223–1236. 366.
C. T. Yeh, C. H. Tu, Journal of Chemical and Engineering Data 52 (2007) 1760–1767. 367.
T. T. Huang, C. T. Yeh, C. H. Tu, Journal of Chemical and Engineering Data 53 (2008) 368 1203–1207.
N. Sastry, NM. Vaghela, PM. Macwan, Journal of Molecular Liquids, (2013) 12-18.
G. Prakash, D. KrishanKumar, Journal of Molecular Liquids, (2013) 180, 64-171.
Sk. Md Nayeem, M. Kondaiah, K. Sreekanth, and D. Krishna Rao, journal of thermodynamics (2014) 13.
F. Yousefi, J. Moghadasi, M. M. Papari, Ind. Eng. Chem. Res. 48, 5079 (2009).
M. M. Papari, J Moghadasi, F. Fadaei, J. Mol. Liq. 165, 87 (2012).
S. Sheikh, M. M.Papari, A. Boushehri., Ind. Eng. Chem. Res. 41, 3274 (2002).
Browse journals by subject